

A Unified Sequencing Workflow for Population-Scale Genomic Studies

B Marosy¹, J Gearhart¹, M Kokosinski¹, J Paschall¹, P Zhang¹, H Ling¹, M Mawhinney¹, C Oncagco¹, L Aker¹, B Craig¹, K Hetrick¹ and K Doheny¹ ¹Johns Hopkins University, Department of Genetic Medicine, Baltimore, MD, USA

Introduction:

Recent advances in next generation sequencing chemistry and instrumentation have significantly reduced per-GB costs, making low pass whole genome sequencing (lpWGS) followed by imputation (AKA genotyping by sequencing) a viable alternative to array genotyping for genome-wide association studies. At the Center for Inherited Disease Research (CIDR), we aim to provide the best quality genetic services at the lowest cost possible, by continuous re-evaluation and optimization of protocols. In a large pilot study (n=5,600), we evaluated library preparation protocols for lpWGS to develop a cost-effective, streamlined method competitive with array genotyping. In addition, while deep whole genome sequencing (WGS) remains the gold standard for comprehensive genetic data, its cost limits scalability. Combining lower coverage whole exome sequencing (WES) with lpWGS (1-2x) followed by imputation, efficient genome sequencing (EGS), offers comparable association results to WGS data at a lower cost (7-fold reduction in reagent cost) 1,2. We further evaluated the lpWGS library prep methods for applicability to small capture panels, enabling a unified workflow at the bench, covering all current population scale sequencing services.

Methods: Workflow

Traditional LP w/Enzymatic Fragmentation			96 Prep - lpWG			FlexPrep - lpWG		
Ctono	1 Plate	8 Plate	ate		8 Plate	Ctopo	1 Plate	8 Plate
Steps	Batch	Batch	Steps	Batch	Batch	Steps	Batch	Batch
Frod/ED AToil	06	760	Primer Extension	96	768	Frag/ER-ATail	96	768
Frag/ER-ATail	96	768	(Sample Barcoding)					
Ligation (Sample Barcoding)	96	768	Pooling	1	8	Ligation (Sample Barcoding)	96	768
Clean Up	96	768	Capture/Wash	1	8	Pooling	8	64
Amplification	96	768	Primer Extension	1	8	Bead Clean Up	8	64
Clean Up	Clean Up 96 768 Amplification (Pool Barcoding)		1	8	Amplification (Pool Barcoding)	8	64	
QC	96	768	Size Selection Bead Clean up	1	8	Bead Clean Up	8	64
Pool	1	8	QC	1	8	QC	8	64

Table 1a: Workflow comparison between traditional library prep, 96-prep and FlexPrep. In both 96-prep and FlexPrep, samples are collapsed/pooled earlier in the workflow providing a scalable method which reduces overall costs without the need to purchase additional equipment specifically for higher throughput. By reducing the sample footprint within each plate early in the process up to a seven-fold reduction in cost savings for QC reagents and consumables is achieved.

	FlexPrep - EGS	1 Plate	8 Plate
	Steps	Batch	Batch
	Frag/ER-ATail	96	768
	Ligation (Sample Barcoding)	96	768
	Pooling	8	64
	Bead Clean Up	8	64
	Amplification (Pool Barcoding)	8	64
	Bead Clean Up	8	64
	QC	8	64
	Pooling & QC	1	8
	Hyb	1	8
$\left\{ \right.$	Capture/Wash	1	8
	Amplification (8 cycles)	1	8
	QC	1	8

able 1b: Workflow using Twist FlexPrep as library prep for fficient Genome Sequencing. Post library prep, 12 x 8lexes are pooled to a final 96 plex pool. A portion is tained as the lpWG library, while the rest undergoes xome enrichment. After enrichment, both portions are ecombined to form a final 96 sample pool containing xome-enriched and lpWG molecules per sample. Iultiplexing 96 samples in one pool for enrichment educes costs and scales throughput. For small captures, ne same workflow is applied without retaining any lpWG naterial.

Portion retained for lpWGS

Methods/Results: Initial pilot using 96-prep and adoption of FlexPrep for lpWG

Initially 2,112 samples of the lpWG pilot study were processed with the Twist 96-prep library kit using 50ng of gDNA as input according to manufacturer protocol. Sample barcodes were incorporated during the initial step using a random primer extension, followed by pooling which collapses 96 samples down from into a single well. The 96-plex pool undergoes a streptavidin bead capture to isolate the extended product. The pool is amplified with indexed primers incorporating a pool barcode based on each 96-plex. (Table 1a)

The Twist FlexPrep library prep kit was then adopted into practice and used to process 1524 samples of the pilot study using 50-100ng of gDNA as input according to the manufacturer protocol. Samples underwent enzymatic fragmentation, end-repair and A-Tailing in one step, followed directly by ligation with incorporation of short normalizing adapters containing inline barcodes to differentiate between samples and generate even amounts of library post ligation. Samples are pooled from 96 individual wells into 8 x 12-plex pools and undergo amplification with dual indexed primers to differentiate between each 12 plex pool. (Table 1a)

Sequencing was performed on the Illumina NovaSeqXPlus platform. Samples are demultiplexed in a two-step process. Using Illumina BCLconvert, the BCL files are first converted to FASTQ, with each file containing a 12-plex pool. Fgbio is then used to further demultiplex the 12plex FASTQs by each inline barcode to generate individual sample level FASTQs. For imputation, the pipeline runs DRAGEN germline variant calling (v4.3.6f) followed by imputation on the Illumina Connected Analytics (ICA). The imputation reference panel is the Human Genome Diversity Project (HGDP)+1kGP version 2. Concordance was determined against the Illumina Global Screening Array (GSA). (Table 2)

Table 2: Compares sequencing QC pipeline metrics between samples process using 96-prep and FlexPrep for the lpWG pilot. Due to the smaller insert size obtained with FlexPrep, sequencing was performed as 2x100. An increase in uniformity was observed with the FlexPrep samples, which improved the call rates by decreasing the missing rate. Concordance to Illumina GSA array was 97.5% and 98.5% between 96 prep and Flex Prep methods.

lpWG Sequencing QC Pipeline Metrics				
Library prep	96 Prep - lpWG	FlexPrep-lpWG		
Sample number	2112	1524		
DNA input (ng)	50	50-100		
Insert size (bp)	380	263		
Read Length	2x150	2x100		
Mean coverage	1.69	1.39		
Pct at 1x	52.45	60.46		
Pct dups	39.7	33.49		
Sequencing Yield (raw Gb)	9.6	7.56		
Imputation Call Rate	99.1536	99.4731		
F_Missing Q10	0.008464	0.005269		
Uniformity	52.25	60.46		
Concordance	97.5116 (n=2095)	98.5597 (n=1494)		

Methods/Results: Utility of FlexPrep for small capture panels

The Twist FlexPrep library prep and enrichment kit was used to process 96 HapMap samples using 100ng of gDNA as input according to the manufacturer protocol. In 2 separate experiments, 10ug of the 96 plex library was captured with a small custom panel (0.5Mb) and a mitochondrial capture (16kb). (Table 1b)

Sequencing was performed on the Illumina NovaSeqXPlus platform. Samples are demultiplexed in a two-step process. Using Illumina BCLconvert, the BCL files are first converted to FASTQ, with each file containing a 12-plex pool. Fgbio is then used to further demultiplex the 12plex FASTQs by each inline barcode to generate individual sample level FASTQs. Sample level FASTQ were aligned with BWA mem and variant calling with GATK/Haplotype Caller. (Table 3)

Table 3: Summary of the sequencing qc metrics produced from processing 96 HapMap samples enriched with a small capture (0.5Mb) and mitochondrial panel (16kb) in 2 independent experiments. Samples were pooled down to 1-96plex for both enrichments. While over sequenced, we obtained on average 195x coverage from 0.4 raw Gb yield per sample with 96% of bases covered at 20x for the small capture. The mito panel reached 98% on target at 5000x and 88% on target at 10000x coverage. This provides feasibility data for increased multiplexed enrichments and the flexibility of utilizing this method for multiple applications.

Metric	Small capture	Mito
Library prep	FlexPrep	FlexPrep
Capture product	Custom panel	Mito panel
Capture size (Mb)	0.524	0.016
Sample number	96	96
DNA Input (ng)	100	100
Insert size (bp)	242	211
Read Length	2x150	2x150
Mean coverage	195	16313
Sequencing yield (raw Gb)	0.388	4.2
Pct Duplication	8.37	15.6
Pct on Target at 10x	97.07	na
Pct on Target at 20x	96.73	na
Pct on Target at 10000x mito only	na	88.28
Pct on Target at 5000x mito only	na	98.47

Methods/Results: Utility of FlexPrep for Efficient Genome Sequencing (EGS)

The Twist FlexPrep library prep and enrichment kit was used to process 96 HapMap samples using 100ng of gDNA as input according to the manufacturer protocol, except for retaining a small portion of the initial library as reserve for lpWG sequencing downstream. Enrichment was performed on the 96-plex pool in one reaction with 10ug input of pooled library and the CIDR Custom Exome panel (35.1Mb). Post Enrichment, the exome library was combined with the lpWG portion at a ratio 64:36 (lpWG:Exome). (Table 1b)

Sequencing was performed on the Illumina NovaSeqXPlus platform. Samples are demultiplexed in a two-step process. Using Illumina BCLconvert, the BCL files are first converted to FASTQ, with each file containing a 12plex pool. Fgbio is then used to further demultiplex the 12plex FASTQs by each inline barcode to generate individual sample level FASTQs. The imputation method of lpWG here is the same as lpWG only stated in previous initial pilot data set. Non-Reference Concordance to HGDP+1kGP was performed on 87/96 samples using the lpWG data. The exome portion of the EGS sequencing was aligned with BWA mem and variant calling with GATK/Haplotype Caller. Concordance to Illumina GSA array was performed on 53/96 samples. (Table 4)

EGS Library P	rep, Catpure and Sequ	encing Metrics		
Library prep	FlexPrep - EGS	PCR cycles PostHyb	8	
Sample number	96 (HapMaps)	Insert size (bp)	230	
Capture product	CIDR custom exome	Read length	2x150	
Capture size	35.1 Mb	Sequencing yield (raw Gb)	8	
DNA input (ng)	100	Pct duplication	7.7	
Library yield after pooling 96plex (ug)	22	TiTv dbSNP 129	3.06	
PCR cycles PreHyb	6	Pct dbSNP138 SNV	98.8005	
Hyb input (ug)	10	Pct dbSNP138 INDEL	92.881	
Combi	ned Ratio lpWG:Exome	= 64:36		
lpWG		Exome		
Mean coverage	1.2	Mean coverage	32.5	
Pct at 1x	66.86	Pct at 10x	96.76	
Imputation call rate	99.7332	Pct at 20x	82.5	
Uniformity	66.86	Pct selection*	40.8	
Non-ref concordance SNP	97.5 (n=87)	Fold 80	1.45	
Non-ref concordance Indel	61.6 (n=87)	AT dropout	4.0	
oct Selection takes into account all reads (lpW	GC dropout	1.0		
		Estimated library size (Mil)	172	
		Concordance (n=53)	99.3428	
		Sensitivity 2 het (n=53)	98.7277	

Table 4: Summary of the library prep, capture and sequencing metrics produced from the EGS sequencing. From a single library, both lpWG and Exome libraries were generated and combined at a ratio of 64:36 (lpWG to Exome). LpWG results achieved on average 1.2x coverage with 99.7% imputation call rate. Non-reference SNP concordance to HGDP+1kGP data was 97.5%. WES results achieved on average 33x coverage from 8 raw Gb yield, with 97% and 83% of bases covered at 10x and 20x, respectively. Concordance to Illumina GSA array was 99.3% and sensitivity to heterozygous SNPs was 98.7%.

Discussion/Conclusion:

- Evolving library prep methods that provide improvements to uniformity will help to increase completeness of coverage and reduce missing rates.
- Sample level indexing combined with pool indexing provides cost reductions by reducing the sample footprint early in the library prep process, minimizing labor and automation costs, qc reagents and consumables.
- Enrichment methods and reagents that allow for increased sample multiplexing up to 96 plex, further reduce costs.
- One workflow solution offers more flexible and cost-effective applications (low pass whole genome sequencing, efficient genome sequencing or small capture sequencing) for population scale genome studies.

¹Gaynor et al, Nature Genetics 2024 - https://doi.org/10.1038/s41588-024-01930-4

²DeFelice et al BioRxiv 2024 - https://doi.org/10.1101/2024.04.03.587209